National Repository of Grey Literature 4 records found  Search took 0.01 seconds. 
Significance of protein phosphorylation for bacterial cell
Gregorová, Michaela ; Branny, Pavel (advisor) ; Lišková, Petra (referee)
Phosphorylation - most common post-translational modification has an important role in many cellular processes of bacteria. Bacteria contain enzymes that are in charge of adding phosphoryl group (kinases) or enzymes with reciprocal activity (phosphatases). Reversible phosphorylation and dephosphorylation of proteins are fundamental for signal transduction from the environment to the cell. These modifications can affect enzymatic activity, protein stability, localization as well as interaction with another protein. Due to the complexity of these phosphorylation networks, bacterial cells are capable to adapt very effectively to changing environmental conditions.
Basement membrane and the role of matrix metalloproteinases during embryonic wound healing
Kadlčíková, Dominika ; Šindelka, Radek (advisor) ; Tolde, Ondřej (referee)
The healing process is an attractive topic in biology and medicine. There are two types of wound healing - in embryos and in adults. In the case of embryonic wound healing the whole process is simplified and accelerated. An inflammatory reaction typical for adult healing is eliminated and the wound is healed without scars. Better understanding of embryonic wound healing could lead to more effective treatment of injuries, burns and chronic wounds in human population. The studying of molecular mechanisms in the healing process is also meaningful in the context of understanding the cancer regulation. The wound healing could be compared with embryonic development in many ways. The body's axes are essential for a spatial activation of genes involved in development. Our hypotesis was that the axis are also important for wound healing. It has been suggested that the cell's polarity and motility depends whether the wound is vertical or horizontal. There are also connections between wound healing and cancer development. One of them is the degradation of the basement membrane (BM) and extracellular matrix (ECM). The process of degradation is catalyzed by the coordinated action of several classes of enzymes. Some of them - matrix metalloproteinases (MMP) and their role in embryonic wound healing have been...
Interaction studies of insulin, IGF-1/2 and IGF-1 analogue with insulin and IGF-1 receptors
Chrudinová, Martina ; Ryšlavá, Helena (advisor) ; Liberda, Jiří (referee)
Insulin-like growth factors 1 and 2 (IGF-1/2) are single-chain peptides exerting homology (in both amino-acid sequence and tertiary structure) to insulin. The main function of these peptides is promoting celular growth, proliferation and differentiation. Both insulin and insulin-like growth factors mediate their function through membrane receptors - insulin receptor (isoforms A and B) and IGF-1 receptor. All these receptors are members of the tyrosinkinase family of receptors and they exert the same subunit and domain composition. The activation of insulin and IGF-1 receptors is tightly associated with activation of two intracellular signaling pathways. The PI3-K/Akt pathway is involved in the glucose transport to the cell, induction of proliferation or inhibition of apoptosis, while the Ras/MAPK pathway is involved mainly in the induction of cell growth and differentiation. Due to the structure similarity in both the ligands and receptors, every ligand can activate different receptors (with different potency) and the signaling pathways associated with these receptors. Thus, the functions of IGFs and insulin, the same as their receptors, are overlapping. The distinct function of the concrete ligand can be distinguished by the different tissue distribution of both isoforms of insulin receptor and...
Insulin analogues with A-chain extended by the D-domain of IGF-1 and IGF-2
Povalová, Anna ; Stiborová, Marie (advisor) ; Dračínská, Helena (referee)
Insulin and insulin-like growth factors (IGF-1 and -2) together with their receptors take part in a complex system, which affects both basal metabolism of carbohydrates, lipids and proteins as well as cell growth, proliferation, differentiation and apoptosis. Defects in action of insulin or IGFs can lead to serious diseases such as diabetes or cancer. Both of these disorders represent nowadays one of the biggest health threats to the world's population. Insulin and IGFs induce different biological effects through their cognate receptors; two isoforms of the insulin receptor (IR-A and IR-B) and the receptor for IGF-1 (IGF-1R). These receptors bind insulin and IGFs with different affinities and induce different but partially overlapping signalling events leading towards metabolic (especially insulin) or mitogenic responses (IGFs and insulin). To understand the mechanism of action of insulin and IGFs it is important to specify which structural domains of these hormones are responsible for binding to the receptors and exerting specific effects. One region that is missing in insulin is the D-domain of IGF-1 and -2. For this reason, we decided to prepare insulin analogues with the A-chain extended by either the whole D-domain of IGF-1 or IGF-2, or by fragments of the IGF-1 D-domain in order to define the...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.